Apprentissage en temps réel pour la collecte d'information dans les réseaux sociaux.

Thibault Gisselbrecht 1, 2, * Ludovic Denoyer 2 Patrick Gallinari 2 Sylvain Lamprier 2
* Corresponding author
2 MLIA - Machine Learning and Information Access
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : We consider the problem of capturing information on social media under bounded resource. The latter may correspond to real time constraints such as response time limitation, limited computing resources, or social media API restrictions. We formulate this problem as a dynamic source selection problem. We then propose a machine learning methodology for dynamically selecting the most relevant information sources for a given information need. This method is based on an extension of a recently proposed combinatorial bandit algorithm. We provide theoretical guarantees on the behavior of the algorithm. We then evaluate the algorithm on different Twitter datasets for both offline and online settings. MOTS-CLÉS : Apprentissage statistique, réseaux sociaux, bandit manchot
Liste complète des métadonnées

Cited literature [10 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01355405
Contributor : Thibault Gisselbrecht <>
Submitted on : Tuesday, August 23, 2016 - 1:22:29 PM
Last modification on : Thursday, March 21, 2019 - 2:17:49 PM
Document(s) archivé(s) le : Thursday, November 24, 2016 - 12:34:45 PM

File

34.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01355405, version 1

Citation

Thibault Gisselbrecht, Ludovic Denoyer, Patrick Gallinari, Sylvain Lamprier. Apprentissage en temps réel pour la collecte d'information dans les réseaux sociaux.. CORIA 2015 - Conférence en Recherche d'Infomations et Applications, Mar 2015, Paris, France. pp.7-22. ⟨hal-01355405⟩

Share

Metrics

Record views

294

Files downloads

291