SMACk: An Argumentation Framework for Opinion Mining

Abstract : The extraction of the relevant and debated opinions from online social media and commercial websites is an emerging task in the opinion mining research field. Its growing relevance is mainly due to the impact of exploiting such techniques in different application domains from social science analysis to personal advertising. In this demo, we present our opinion summary application built on top of an ar-gumentation framework, a standard AI framework whose value is to exchange, communicate and resolve possibly conflicting viewpoints in distributed scenarios. We show how our application is able to extract relevant and debated opinions from a set of documents containing user-generated content from online commercial websites.
Type de document :
Communication dans un congrès
Subbarao Kambhampati. International Joint Conference on Artificial Intelligence (IJCAI), Jul 2016, New York, NY, United States. IJCAI/AAAI Press, pp.4242-4243, 2016, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, New York, NY, USA, 9--15 July 2016. <http://www.ijcai.org>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01353931
Contributeur : Andrea G. B. Tettamanzi <>
Soumis le : mardi 16 août 2016 - 11:51:26
Dernière modification le : jeudi 18 août 2016 - 01:05:40
Document(s) archivé(s) le : jeudi 17 novembre 2016 - 10:45:28

Fichier

641.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01353931, version 1

Collections

Citation

Mauro Dragoni, Célia Da Costa Pereira, Andrea G. B. Tettamanzi, Serena Villata. SMACk: An Argumentation Framework for Opinion Mining. Subbarao Kambhampati. International Joint Conference on Artificial Intelligence (IJCAI), Jul 2016, New York, NY, United States. IJCAI/AAAI Press, pp.4242-4243, 2016, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, New York, NY, USA, 9--15 July 2016. <http://www.ijcai.org>. <hal-01353931>

Partager

Métriques

Consultations de
la notice

184

Téléchargements du document

83