An Introduction to Deep Learning

Ludovic Arnold 1 Sébastien Rebecchi 1 Sylvain Chevallier 2 Hélène Paugam-Moisy 3
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
3 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : The deep learning paradigm tackles problems on which shallow architectures (e.g. SVM) are affected by the curse of dimensionality. As part of a two-stage learning scheme involving multiple layers of non-linear processing a set of statistically robust features is automatically extracted from the data. The present tutorial introducing the ESANN deep learning special session details the state-of-the-art models and summarizes the current understanding of this learning approach which is a reference for many difficult classification tasks.
Complete list of metadatas

Cited literature [44 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01352061
Contributor : Sylvain Chevallier <>
Submitted on : Friday, August 5, 2016 - 1:07:40 PM
Last modification on : Wednesday, October 31, 2018 - 12:24:25 PM

File

publishedversion.pdf
Explicit agreement for this submission

Identifiers

  • HAL Id : hal-01352061, version 1

Citation

Ludovic Arnold, Sébastien Rebecchi, Sylvain Chevallier, Hélène Paugam-Moisy. An Introduction to Deep Learning. European Symposium on Artificial Neural Networks (ESANN), Apr 2011, Bruges, Belgium. ⟨hal-01352061⟩

Share

Metrics

Record views

1121

Files downloads

1867