Surface Meshing with Curvature Convergence

Abstract : Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to Riemannian metric and independent of embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm.
Type de document :
Article dans une revue
IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2013, pp.919-934. <10.1109/TVCG.2013.253>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01351708
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : lundi 13 mars 2017 - 10:26:52
Dernière modification le : lundi 20 mars 2017 - 17:17:26
Document(s) archivé(s) le : mercredi 14 juin 2017 - 12:52:44

Fichier

Liris-6533.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Huibin Li, Wei Zeng, Jean-Marie Morvan, Liming Chen, David Gu. Surface Meshing with Curvature Convergence. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2013, pp.919-934. <10.1109/TVCG.2013.253>. <hal-01351708>

Partager

Métriques

Consultations de
la notice

81

Téléchargements du document

20