Wideband multiple diversity tensor array processing

Abstract : This paper establishes a tensor model for wideband coherent array processing including multiple physical diversities. A separable coherent focusing operation is proposed as a pre-processing step in order to ensure the multilinearity of the interpolated data. We propose an ALS algorithm to process tensor data, taking into account the noise correlation structure introduced by the focusing operation. We show through computer simulations that the estimation of DoA and polarization parameters improves compared to existing narrowband tensor processing and wideband MUSIC. The performance is also compared to the Cramér-Rao bounds of the wideband tensor model.
Type de document :
Article dans une revue
IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2017, 65 (20), pp.5334-5346. <10.1109/TSP.2017.2725219>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01350549
Contributeur : Francesca Raimondi <>
Soumis le : mardi 4 juillet 2017 - 17:09:20
Dernière modification le : samedi 16 septembre 2017 - 01:08:29

Fichier

WB-Tensor-Array-Processing.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Collections

Citation

Francesca Raimondi, Rodrigo Cabral Farias, Olivier Michel, Pierre Comon. Wideband multiple diversity tensor array processing. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2017, 65 (20), pp.5334-5346. <10.1109/TSP.2017.2725219>. <hal-01350549v5>

Partager

Métriques

Consultations de
la notice

117

Téléchargements du document

38