Data Selection for Compact Adapted SMT Models

Abstract : Data selection is a common technique for adapting statistical translation models for a specific domain, which has been shown to both improve translation quality and to reduce model size. Selection relies on some in-domain data, of the same domain of the texts expected to be translated. Selecting the sentence-pairs that are most similar to the in-domain data from a pool of parallel texts has been shown to be effective; yet, this approach holds the risk of resulting in a limited coverage, when necessary n-grams that do appear in the pool are less similar to in-domain data that is available in advance. Some methods select additional data based on the actual text that needs to be translated. While useful, this is not always a practical scenario. In this work we describe an extensive exploration of data selection techniques over Arabic to French datasets, and propose methods to address both similarity and coverage considerations while maintaining a limited model size.
Type de document :
Communication dans un congrès
Eleventh Conference of the Association for Machine Translation in the Americas (AMTA), Oct 2014, Vancouver, Canada. Proceedings of the Eleventh Conference of the Association for Machine Translation in the Americas (AMTA)
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01350121
Contributeur : Laurent Besacier <>
Soumis le : vendredi 29 juillet 2016 - 16:40:12
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03

Fichier

2014-046.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01350121, version 1

Collections

Citation

Shachar Mirkin, Laurent Besacier. Data Selection for Compact Adapted SMT Models. Eleventh Conference of the Association for Machine Translation in the Americas (AMTA), Oct 2014, Vancouver, Canada. Proceedings of the Eleventh Conference of the Association for Machine Translation in the Americas (AMTA). 〈hal-01350121〉

Partager

Métriques

Consultations de la notice

167

Téléchargements de fichiers

54