J. Campbell and D. Drucker, Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action, Cell Metabolism, vol.17, issue.6, pp.819-837, 2013.
DOI : 10.1016/j.cmet.2013.04.008

B. Ahren, Autonomic regulation of islet hormone secretion - Implications for health and disease, Diabetologia, vol.43, issue.4, pp.393-410, 2000.
DOI : 10.1007/s001250051322

R. Bertram, A. Sherman, and L. Satin, Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion, AJP: Endocrinology and Metabolism, vol.293, issue.4, pp.890-900, 2007.
DOI : 10.1152/ajpendo.00359.2007

D. Hodson, R. Mitchell, and E. Bellomo, Lipotoxicity disrupts incretin-regulated human ?? cell connectivity, Journal of Clinical Investigation, vol.123, issue.10, pp.4182-4194, 2013.
DOI : 10.1172/JCI68459DS1

N. Porksen, M. Hollingdal, C. Juhl, P. Butler, J. Veldhuis et al., Pulsatile Insulin Secretion: Detection, Regulation, and Role in Diabetes, Diabetes, vol.51, issue.Supplement 1, pp.245-254, 2002.
DOI : 10.2337/diabetes.51.2007.S245

M. Raoux, G. Bontorin, Y. Bornat, J. Lang, and S. Renaud, Bioelectronic sensing of insulin demand Biohybrid systems: nerves, interfaces, and machines, pp.191-202, 2011.

S. Renaud, B. Catargi, and J. Lang, Biosensors in Diabetes : How to get the most out of evolution and transpose it into a signal., IEEE Pulse, vol.5, issue.3, pp.30-34, 2014.
DOI : 10.1109/MPUL.2014.2309577

URL : https://hal.archives-ouvertes.fr/hal-00993190

Y. Bornat, M. Raoux, and Y. Boutaib, Detection of Electrical Activity of Pancreatic Beta-cells Using Micro-electrode Arrays, 2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications, pp.233-236, 2010.
DOI : 10.1109/DELTA.2010.60

URL : https://hal.archives-ouvertes.fr/hal-00501820

M. Raoux, Y. Bornat, A. Quotb, B. Catargi, S. Renaud et al., Non-invasive long-term and real-time analysis of endocrine cells on micro-electrode arrays, The Journal of Physiology, vol.8, issue.5, pp.1085-1091, 2012.
DOI : 10.1113/jphysiol.2011.220038

URL : https://hal.archives-ouvertes.fr/hal-00742984

K. Wellershaus, J. Degen, and J. Deuchars, A new conditional mouse mutant reveals specific expression and functions of connexin36 in neurons and pancreatic beta-cells, Experimental Cell Research, vol.314, issue.5, pp.997-1012, 2008.
DOI : 10.1016/j.yexcr.2007.12.024

Q. Nguyen, A. Caro, and M. Raoux, A novel bioelectronic glucose sensor to process distinct electrical activities of pancreatic beta-cells, Conf Proc IEEE Eng Med Biol Soc, vol.2013, pp.172-175, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00980774

P. Bucher, Z. Mathe, and P. Morel, Assessment of a Novel Two-Component Enzyme Preparation for Human Islet Isolation and Transplantation, Transplantation, vol.79, issue.1, pp.91-97, 2005.
DOI : 10.1097/01.TP.0000147344.73915.C8

S. Potter and T. Demarse, A new approach to neural cell culture for long-term studies, Journal of Neuroscience Methods, vol.110, issue.1-2, pp.17-24, 2001.
DOI : 10.1016/S0165-0270(01)00412-5

D. Marinis, Y. Salehi, A. Ward, and C. , GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release by Differential Modulation of N- and L-Type Ca2+ Channel-Dependent Exocytosis, Cell Metabolism, vol.11, issue.6, pp.543-553, 2010.
DOI : 10.1016/j.cmet.2010.04.007

S. Santana-de-sa, R. Ferrer, E. Rojas, and I. Atwater, EFFECTS OF ADRENALINE AND NORADRENALINE ON GLUCOSE-INDUCED ELECTRICAL ACTIVITY OF MOUSE PANCREATIC ?? CELL, Quarterly Journal of Experimental Physiology, vol.68, issue.2, pp.247-258, 1983.
DOI : 10.1113/expphysiol.1983.sp002716

P. Rorsman, K. Bokvist, and C. Ammala, Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells, Nature, vol.349, issue.6304, pp.77-79, 1991.
DOI : 10.1038/349077a0

T. Vilsboll, T. Krarup, and J. Sonne, Incretin Secretion in Relation to Meal Size and Body Weight in Healthy Subjects and People with Type 1 and Type 2 Diabetes Mellitus, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.6, pp.2706-2713, 2003.
DOI : 10.1210/jc.2002-021873

P. Meda, D. Bosco, and M. Chanson, Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells., Journal of Clinical Investigation, vol.86, issue.3, 1990.
DOI : 10.1172/JCI114772

T. Pfeiffer, U. Kraushaar, and M. Dufer, Rapid functional evaluation of beta-cells by extracellular recording of membrane potential oscillations with microelectrode arrays, Pfl??gers Archiv - European Journal of Physiology, vol.125, issue.Pt 3, pp.835-840, 2011.
DOI : 10.1007/s00424-011-1029-z

A. Charollais, A. Gjinovci, and J. Huarte, Junctional communication of pancreatic ?? cells contributes to the control of insulin secretion and glucose tolerance, Journal of Clinical Investigation, vol.106, issue.2, pp.235-243, 2000.
DOI : 10.1172/JCI9398

Q. Zhang, J. Galvanovskis, and F. Abdulkader, Cell coupling in mouse pancreatic ??-cells measured in intact islets of Langerhans, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.9, issue.4, pp.3503-3523, 2008.
DOI : 10.1038/ncb1563

G. Buzsaki, C. Anastassiou, and C. Koch, The origin of extracellular fields and currents ??? EEG, ECoG, LFP and spikes, Nature Reviews Neuroscience, vol.9, issue.6, pp.407-420, 2012.
DOI : 10.1038/nrn3241

S. Schönecker, U. Kraushaar, and M. Dufer, Long-term culture and functionality of pancreatic islets monitored using microelectrode arrays, Integr. Biol., vol.87, issue.2 Pt, pp.540-544, 2014.
DOI : 10.1529/biophysj.103.035097

Y. Nam and B. Wheeler, In vitro microelectrode array technology and neural recordings, Crit Rev Biomed Eng, vol.39, pp.45-61, 2011.

H. Meissner and H. Schmelz, Membrane potential of beta-cells in pancreatic islets, Pfl???gers Archiv European Journal of Physiology, vol.22, issue.Suppl., pp.195-206, 1974.
DOI : 10.1007/BF00586918

A. Quotb, Y. Bornat, M. Raoux, J. Lang, and S. Renaud, NeuroBetaMed: A re-configurable wavelet-based event detection circuit for in vitro biological signals, 2012 IEEE International Symposium on Circuits and Systems, pp.1532-1535, 2012.
DOI : 10.1109/ISCAS.2012.6271542

URL : https://hal.archives-ouvertes.fr/hal-00742324

Y. Palti, G. David, E. Lachov, Y. Mida, and R. Schatzberger, Islets of Langerhans Generate Wavelike Electric Activity Modulated by Glucose Concentration, Diabetes, vol.45, issue.5, pp.595-601, 1996.
DOI : 10.2337/diab.45.5.595

P. Rorsman and M. Braun, Regulation of Insulin Secretion in Human Pancreatic Islets, Annual Review of Physiology, vol.75, issue.1, pp.155-179, 2013.
DOI : 10.1146/annurev-physiol-030212-183754

M. Braun, R. Ramracheya, and M. Bengtsson, Voltage-Gated Ion Channels in Human Pancreatic ??-Cells: Electrophysiological Characterization and Role in Insulin Secretion, Diabetes, vol.57, issue.6, pp.1618-1628, 2008.
DOI : 10.2337/db07-0991

V. Cigliola, V. Chellakudam, W. Arabieter, and M. P. , Connexins and ??-cell functions, Diabetes Research and Clinical Practice, vol.99, issue.3, pp.250-259, 2012.
DOI : 10.1016/j.diabres.2012.10.016

B. Hellman, H. Dansk, and E. Grapengiesser, Pancreatic ??-cells communicate via intermittent release of ATP, AJP: Endocrinology and Metabolism, vol.286, issue.5, pp.759-765, 2004.
DOI : 10.1152/ajpendo.00452.2003

D. Bosco, J. Haefliger, and M. P. , Connexins: Key Mediators of Endocrine Function, Physiological Reviews, vol.91, issue.4, pp.1393-1445, 2011.
DOI : 10.1152/physrev.00027.2010

L. Fridlyand, N. Tamarina, and L. Philipson, Bursting and calcium oscillations in pancreatic ??-cells: specific pacemakers for specific mechanisms, AJP: Endocrinology and Metabolism, vol.299, issue.4, pp.517-532, 2010.
DOI : 10.1152/ajpendo.00177.2010

O. Larsson, H. Kindmark, R. Brandstrom, B. Fredholm, and P. Berggren, Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell., Proceedings of the National Academy of Sciences, vol.93, issue.10, pp.5161-5165, 1996.
DOI : 10.1073/pnas.93.10.5161

E. Grapengiesser, E. Gylfe, and B. Hellman, Sulfonylurea mimics the effect of glucose in inducing large amplitude oscillations of cytoplasmic Ca 2+ in pancreatic beta-cells, Mol Pharmacol, vol.37, pp.461-467, 1990.

J. Henquin, D. Dufrane, and M. Nenquin, Nutrient Control of Insulin Secretion in Isolated Normal Human Islets, Diabetes, vol.55, issue.12, pp.3470-3477, 2006.
DOI : 10.2337/db06-0868

W. Fujimoto, T. Miki, and T. Ogura, Niflumic acid-sensitive ion channels play an important role in the induction of glucose-stimulated insulin secretion by cyclic AMP in mice, Diabetologia, vol.54, issue.5, pp.863-872, 2009.
DOI : 10.1007/s00125-009-1306-y

J. Sanchez-andres, A. Gomis, and M. Valdeolmillos, The electrical activity of mouse pancreatic beta-cells recorded in vivo shows glucose-dependent oscillations., The Journal of Physiology, vol.486, issue.1, pp.223-228, 1995.
DOI : 10.1113/jphysiol.1995.sp020804

D. Keenan, R. Basu, Y. Liu, A. Basu, G. Bock et al., Logistic model of glucose-regulated C-peptide secretion: hysteresis pathway disruption in impaired fasting glycemia, AJP: Endocrinology and Metabolism, vol.303, issue.3, pp.397-409, 2012.
DOI : 10.1152/ajpendo.00494.2011

J. Henquin, Role of voltage- and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells, Pfl???gers Archiv European Journal of Physiology, vol.231, issue.5, pp.568-572, 1990.
DOI : 10.1007/BF00382691

J. Dolensek, A. Stozer, M. Skelin-klemen, and E. Miller, The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices, PLoS ONE, vol.434, issue.12, p.82374
DOI : 10.1371/journal.pone.0082374.s007

R. Ritzel, J. Veldhuis, and P. Butler, The mass, but not the frequency, of insulin secretory bursts in isolated human islets is entrained by oscillatory glucose exposure, AJP: Endocrinology and Metabolism, vol.290, issue.4, pp.750-756, 1997.
DOI : 10.1152/ajpendo.00381.2005

C. Carvalho, H. Barbosa, and A. Britan, Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets, Diabetologia, vol.4, issue.Suppl 1, pp.1428-1437, 2009.
DOI : 10.1007/s00125-010-1726-8

C. Carvalho, R. Oliveira, and A. Britan, Impaired ??-cell-??-cell coupling mediated by Cx36 gap junctions in prediabetic mice, AJP: Endocrinology and Metabolism, vol.303, issue.1, pp.144-151, 2012.
DOI : 10.1152/ajpendo.00489.2011

V. Serre-beinier, D. Bosco, and L. Zulianello, Cx36 makes channels coupling human pancreatic ??-cells, and correlates with insulin expression, Human Molecular Genetics, vol.18, issue.3, pp.428-439, 2009.
DOI : 10.1093/hmg/ddn370

S. Borot, N. Niclauss, and A. Wojtusciszyn, Impact of the Number of Infusions on 2-Year Results of Islet-After-Kidney Transplantation in the GRAGIL Network, Transplantation, vol.92, pp.1031-1038, 2011.
DOI : 10.1097/TP.0b013e318230c236

URL : https://hal.archives-ouvertes.fr/inserm-00628808

G. Steil and G. Grodsky, The Artificial Pancreas: Is it Important to Understand How the ?? Cell Controls Blood Glucose?, Journal of Diabetes Science and Technology, vol.14, issue.3, pp.1359-1369, 2013.
DOI : 10.2337/db11-1445

E. Diabetologia and . Fig, Glucose-evoked slow potentials are generated at physiological extracellular calcium levels. a: Representative electrical response of mouse islet cells to increasing extracellular calcium concentrations (indicated in mmol/l) in the presence of 15 mmol/l glucose (G15). b: Higher temporal resolution of portions of the recording in a. c and d: Specific band-pass filtering (c: 2?700 Hz; d: 0.2?2 Hz) shows the decreasing amplitude of SPs for increasing concentrations of extracellular calcium

E. Fig, High temporal resolution traces showing representative mouse islet electrical activities under different experimental conditions used in FIG. 3. a (corresponds to FIG.3b upper trace): 8 mmol/l glucose during the increasing phase of a glucose ramp (G8 Up); b (corresponds to FIG.3b lower trace): G8 during the decreasing phase of a glucose ramp (G8 Down) (for protocol, see FIG.3a); c (corresponds to FIG, pp.0-5