Recurrence complexity analysis of oscillatory signals with application to general anesthesia EEG signals

Abstract : Recurrence structures in univariate time series are challenging to detect. We propose a combination of recurrence and symbolic analysis in order to identify such structures in a univariate signal. This method allows to obtain symbolic representation of the signal and quantify it by calculating its complexity measure. To this end, we propose a novel method of phase space reconstruction based on the signal's time-frequency representation and show that the proposed method outperforms conventional phase space reconstruction by delay embedding techniques. We evaluate our method on synthetic data and show its application to experimental EEG signals.
Type de document :
Pré-publication, Document de travail
Submitted to Physics Letters A. 2016
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01343631
Contributeur : Mariia Fedotenkova <>
Soumis le : vendredi 8 juillet 2016 - 20:19:35
Dernière modification le : mercredi 28 septembre 2016 - 11:01:06

Fichier

Manuscript.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01343631, version 1

Citation

Mariia Fedotenkova, Peter Beim Graben, Tamara Tošić, Jamie Sleigh, Axel Hutt. Recurrence complexity analysis of oscillatory signals with application to general anesthesia EEG signals. Submitted to Physics Letters A. 2016. 〈hal-01343631〉

Partager

Métriques

Consultations de la notice

482

Téléchargements de fichiers

170