Skip to Main content Skip to Navigation
Journal articles

Weighted Multilevel Langevin Simulation of Invariant Measures

Abstract : We investigate a weighted Multilevel Richardson-Romberg extrapolation for the ergodic approximation of invariant distributions of diffusions adapted from the one introduced in~[Lemaire-Pag\`es, 2013] for regular Monte Carlo simulation. In a first result, we prove under weak confluence assumptions on the diffusion, that for any integer $R\ge2$, the procedure allows us to attain a rate $n^{\frac{R}{2R+1}}$ whereas the original algorithm convergence is at a weak rate $n^{1/3}$. Furthermore, this is achieved without any explosion of the asymptotic variance. In a second part, under stronger confluence assumptions and with the help of some second order expansions of the asymptotic error, we go deeper in the study by optimizing the choice of the parameters involved by the method. In particular, for a given $\varepsilon>0$, we exhibit some semi-explicit parameters for which the number of iterations of the Euler scheme required to attain a Mean-Squared Error lower than $\varepsilon^2$ is about $\varepsilon^{-2}\log(\varepsilon^{-1})$. Finally, we numerically this Multilevel Langevin estimator on several examples including the simple one-dimensional Ornstein-Uhlenbeck process but also on a high dimensional diffusion motivated by a statistical problem. These examples confirm the theoretical efficiency of the method.
Document type :
Journal articles
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download
Contributor : Gilles Pagès <>
Submitted on : Friday, July 1, 2016 - 6:09:23 PM
Last modification on : Friday, March 27, 2020 - 3:14:59 AM


Files produced by the author(s)



Gilles Pagès, Fabien Panloup. Weighted Multilevel Langevin Simulation of Invariant Measures. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (6), pp.3358-3417. ⟨10.1214/17-AAP1364⟩. ⟨hal-01340798⟩



Record views


Files downloads