Wave Generation in Unidirectional Chains of Idealized Neural Oscillators

Abstract : We investigate the dynamics of unidirectional semi-infinite chains of type-I oscillators that are periodically forced at their root node, as an archetype of wave generation in neural networks. In previous studies, numerical simulations based on uniform forcing have revealed that trajectories approach a trav-eling wave in the far-downstream, large time limit. While this phenomenon seems typical, it is hardly anticipated because the system does not exhibit any of the crucial properties employed in available proofs of existence of traveling waves in lattice dynamical systems. Here, we give a full mathematical proof of generation under uniform forcing in a simple piecewise affine setting for which the dynamics can be solved explicitly. In particular, our analysis proves existence, global stability, and robustness with respect to perturbations of the forcing, of families of waves with arbitrary period/wave number in some range, for every value of the parameters in the system.
Type de document :
Article dans une revue
Journal of Mathematical Neuroscience, BioMed Central, 2016, <10.1186/s13408-016-0037-x>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01340631
Contributeur : Bastien Fernandez <>
Soumis le : vendredi 1 juillet 2016 - 14:42:50
Dernière modification le : jeudi 27 avril 2017 - 09:46:41

Fichier

1412.0812v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

UPMC | USPC | PMA

Citation

Bastien Fernandez, Stanislav M. Mintchev. Wave Generation in Unidirectional Chains of Idealized Neural Oscillators. Journal of Mathematical Neuroscience, BioMed Central, 2016, <10.1186/s13408-016-0037-x>. <hal-01340631>

Partager

Métriques

Consultations de
la notice

61

Téléchargements du document

27