A Dictionary-Learning Sparse Representation Framework for Pose Classification

Yuyao Zhang 1 Khalid Idrissi 1 Christophe Garcia 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : This paper proposes a Dictionary-Learning Sparse Representation framework (DLSR) to deal with face pose estimation in noise, bad illumination and low-resolution cases. Sparse and redundant modelling of data assumes an ability to describe signals as linear combinations of a few atoms from a pre-specified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this pose estimation problem. The proposed approach models the appearance of face images from the same pose via a sparse model which learns the dictionary D from a set of image patches with the objective to minimize the reconstruction error of the target image, in order to coincide with the pose classification criterion. Then, the combination of the trained dictionaries of all pose classes are used as an over-complete dictionary for sparse representation and classification. Experimental results demonstrate the effectiveness of the proposed Dictionary-Learning Sparse Representation framework for treating the pose classification in dynamic illumination condition and low-resolution images.
Type de document :
Communication dans un congrès
IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2013), Sep 2013, Southampton, United Kingdom. pp.1-6, 2013, 〈10.1109/MLSP.2013.6661971〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01339254
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : mercredi 29 juin 2016 - 15:50:25
Dernière modification le : jeudi 19 avril 2018 - 14:38:06

Identifiants

Citation

Yuyao Zhang, Khalid Idrissi, Christophe Garcia. A Dictionary-Learning Sparse Representation Framework for Pose Classification. IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2013), Sep 2013, Southampton, United Kingdom. pp.1-6, 2013, 〈10.1109/MLSP.2013.6661971〉. 〈hal-01339254〉

Partager

Métriques

Consultations de la notice

146