On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials

Eliane Bécache 1 Patrick Joly 1 Valentin Vinoles 2, *
* Auteur correspondant
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : This work deals with Perfectly Matched Layers (PMLs) in the context of dispersive media, and in particular for Negative Index Metamaterials (NIMs). We first present some properties of dispersive isotropic Maxwell equations that include NIMs. We then demonstrate numerically the inherent instabilities of the classical PMLs applied to NIMs. We propose and analyse the stability of very general PMLs for a large class of dispersive systems using a new change of variable. We give necessary criteria for the stability of such models. For dispersive isotropic Maxwell equations, this analysis is completed by giving necessary and sufficient conditions of stability. Finally, we propose new PMLs that satisfy these criteria and demonstrate numerically their efficiency.
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01327315
Contributeur : Valentin Vinoles <>
Soumis le : mercredi 12 juillet 2017 - 13:49:26
Dernière modification le : jeudi 5 octobre 2017 - 16:14:02

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

  • HAL Id : hal-01327315, version 3

Citation

Eliane Bécache, Patrick Joly, Valentin Vinoles. On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials. 2016. 〈hal-01327315v3〉

Partager

Métriques

Consultations de
la notice

79

Téléchargements du document

37