Generalized SURE for optimal shrinkage of singular values in low-rank matrix denoising

Abstract : We consider the problem of estimating a low-rank signal matrix from noisy measurements under the assumption that the distribution of the data matrix belongs to an exponential family. In this setting, we derive generalized Stein's unbiased risk estimation (SURE) formulas that hold for any spectral estimators which shrink or threshold the singular values of the data matrix. This leads to new data-driven spectral estimators, whose optimality is discussed using tools from random matrix theory and through numerical experiments. Under the spiked population model and in the asymptotic setting where the dimensions of the data matrix are let going to infinity, some theoretical properties of our approach are compared to recent results on asymptotically optimal shrinking rules for Gaussian noise. It also leads to new procedures for singular values shrinkage in finite-dimensional matrix denoising for Gamma-distributed and Poisson-distributed measurements.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01323285
Contributeur : Jérémie Bigot <>
Soumis le : samedi 22 avril 2017 - 22:07:17
Dernière modification le : mercredi 26 avril 2017 - 01:05:34
Document(s) archivé(s) le : dimanche 23 juillet 2017 - 12:23:50

Fichier

GSURE_SVD_Thresh.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01323285, version 1
  • ARXIV : 1605.07412

Collections

Citation

Jérémie Bigot, Charles-Alban Deledalle, Delphine Féral. Generalized SURE for optimal shrinkage of singular values in low-rank matrix denoising. 2017. 〈hal-01323285〉

Partager

Métriques

Consultations de
la notice

106

Téléchargements du document

33