A powerful multiple testing procedure in linear Gaussian model

Abstract : We study the control of the familywise error rate (FWER) in the linear Gaussian model when the n × p design matrix is of rank p. A procedure based on a lasso-type estimator is optimized with respect to the volume of the acceptance region. Surprisingly, it reduces to a simple new multiple testing procedure based on the maximum likelihood estimator. This new procedure is shown to be more powerful than the existing ones. Numerical experiments highlight the performances of our approach compared to the state-of-the-art procedures. An application to the detection of metabolites in metabolomics is provided.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01322077
Contributeur : Patrick Tardivel <>
Soumis le : mardi 4 juillet 2017 - 16:26:15
Dernière modification le : jeudi 6 juillet 2017 - 16:40:45

Fichier

FWER_control_unblinded.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01322077, version 4

Citation

Patrick Tardivel, Remi Servien, Didier Concordet. A powerful multiple testing procedure in linear Gaussian model. 2017. <hal-01322077v4>

Partager

Métriques

Consultations de
la notice

58

Téléchargements du document

19