Model-free spatial Interpolation and error prediction for survey data acquired by mobile platforms

Abstract : The paper proposes a new randomized Cross Validation (CV) criterion specially designed for use with data acquired over non-uniformly scattered designs, like the linear transect surveys typical in environmental observation. Numerical results illustrate the impact of randomized cross-validation in real environmental datasets showing that it leads to interpolated fields with smaller error at a much lower computational load. Randomized CV enables a robust parameterization of interpolation algorithms, in a manner completely driven by the data and free of any modelling assumptions. The new method proposed here resorts to tools and concepts from Computational Geometry, in particular the Yao graph determined by the set of sampled sites. The method randomly chooses the hold-out sets such that they reflect, statistically, the geometry of the design with respect to the unobserved points of the area where the observations are to be extrapolated, minimizing biases due to the particular geometry of the designs.
Type de document :
Communication dans un congrès
OCEANS 2016, Apr 2016, Shanghai, China. 2016, <http://www.oceans16.org/>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01318140
Contributeur : Maria Joao Rendas <>
Soumis le : jeudi 19 mai 2016 - 11:52:59
Dernière modification le : samedi 21 mai 2016 - 01:05:28

Fichier

paperOceans2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01318140, version 1

Collections

Citation

Maria-João Rendas. Model-free spatial Interpolation and error prediction for survey data acquired by mobile platforms. OCEANS 2016, Apr 2016, Shanghai, China. 2016, <http://www.oceans16.org/>. <hal-01318140>

Partager

Métriques

Consultations de
la notice

69

Téléchargements du document

34