Activity-based Credit Assignment (ACA) Heuristic for Simulation-based Stochastic Search in a Hierarchical Model-base of Systems

Abstract : Synthesis of systems constitutes a vast class of problems. Although machine learning techniques operate at the functional level, little attention has been paid to system synthesis using a hierarchical model-base. This paper develops an original approach for automatically rating component systems and composing them according to the experimental frames in which they are placed. Components are assigned credit by correlating measures of their participation (activity) in simulation runs with run outcomes. These ratings are employed to bias component selection in subsequent compositions.
Type de document :
Article dans une revue
IEEE Systems Journal, IEEE, 2014, PP (99), pp.1-12. <10.1109/JSYST.2014.2342534>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01315156
Contributeur : Alexandre Muzy <>
Soumis le : jeudi 12 mai 2016 - 17:25:49
Dernière modification le : mercredi 18 mai 2016 - 01:09:27
Document(s) archivé(s) le : mercredi 16 novembre 2016 - 02:40:18

Fichier

aca1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexandre Muzy, Bernard P. Zeigler. Activity-based Credit Assignment (ACA) Heuristic for Simulation-based Stochastic Search in a Hierarchical Model-base of Systems. IEEE Systems Journal, IEEE, 2014, PP (99), pp.1-12. <10.1109/JSYST.2014.2342534>. <hal-01315156>

Partager

Métriques

Consultations de
la notice

23

Téléchargements du document

33