Automatic Characteristic Frequency Association and All-Sideband Demodulation for Detection of a Bearing Fault of a Test Rig

Abstract : This paper proposes advanced signal-processing techniques to improve condition monitoring of operating machines. The proposed methods use the results of a blind spectrum interpretation that includes harmonic and sideband series detection. The rst contribution of this study is an algorithm for automatic association of harmonic and sideband series to characteristic fault frequencies according to a kinematic conguration. The approach proposed has the advantage of taking into account a possible slip of the rolling-element bearings. In the second part, we propose a full-band demodulation process from all sidebands that are relevant to the spectral estimation. To do so, a multi-rate ltering process in an iterative schema provides satisfying precision and stability over the targeted demodulation band, even for unsymmetrical and extremely narrow bands. After synchronous averaging, the ltered signal is demodulated for calculation of the amplitude and frequency modulation functions, and then any features that indicate faults. Finally, the proposed algorithms are validated on vibration signals measured on a test rig that was designed as part of the Eu-ropean Innovation Project KAStrion'. This rig simulates a wind turbine drive * Corresponding author Email address: marcin.firla@gipsa-lab.grenoble-inp.fr (Marcin Firla) Preprint submitted to Mechanical Systems and Signal Processing March 11, 2016 train at a smaller scale. The data show the robustness of the method for localizing and extracting a fault on the main bearing. The evolution of the proposed features is a good indicator of the fault severity.
Type de document :
Article dans une revue
Mechanical Systems and Signal Processing, Elsevier, 2016, 〈10.1016/j.ymssp.2016.04.036〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01314866
Contributeur : Nadine Martin <>
Soumis le : jeudi 12 mai 2016 - 11:44:36
Dernière modification le : mercredi 25 avril 2018 - 14:18:03
Document(s) archivé(s) le : mardi 16 août 2016 - 09:37:06

Fichier

2016_03_11_Firla_MSSP_manuscri...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marcin Firla, Zhong-Yang Li, Nadine Martin, Christian Pachaud, Tomasz Barszcz. Automatic Characteristic Frequency Association and All-Sideband Demodulation for Detection of a Bearing Fault of a Test Rig. Mechanical Systems and Signal Processing, Elsevier, 2016, 〈10.1016/j.ymssp.2016.04.036〉. 〈hal-01314866〉

Partager

Métriques

Consultations de la notice

319

Téléchargements de fichiers

214