Mean Absolute Percentage Error for regression models

Abstract : We study in this paper the consequences of using the Mean Absolute Percentage Error (MAPE) as a measure of quality for regression models. We prove the existence of an optimal MAPE model and we show the universal consistency of Empirical Risk Minimization based on the MAPE. We also show that finding the best model under the MAPE is equivalent to doing weighted Mean Absolute Error (MAE) regression, and we apply this weighting strategy to kernel regression. The behavior of the MAPE kernel regression is illustrated on simulated data.
Type de document :
Article dans une revue
Neurocomputing, Elsevier, 2016, Advances in artificial neural networks, machine learning and computational intelligence — Selected papers from the 23rd European Symposium on Artificial Neural Networks (ESANN 2015), 192, pp.38-48. <http://www.sciencedirect.com/science/article/pii/S0925231216003325>. <10.1016/j.neucom.2015.12.114>


https://hal.archives-ouvertes.fr/hal-01312590
Contributeur : Fabrice Rossi <>
Soumis le : samedi 7 mai 2016 - 15:51:03
Dernière modification le : mardi 10 mai 2016 - 01:06:05
Document(s) archivé(s) le : mardi 15 novembre 2016 - 22:16:18

Fichiers

demyttenaeregoldenetal2016mean...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Partage selon les Conditions Initiales 4.0 International License

Identifiants

Collections

Citation

Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, Fabrice Rossi. Mean Absolute Percentage Error for regression models. Neurocomputing, Elsevier, 2016, Advances in artificial neural networks, machine learning and computational intelligence — Selected papers from the 23rd European Symposium on Artificial Neural Networks (ESANN 2015), 192, pp.38-48. <http://www.sciencedirect.com/science/article/pii/S0925231216003325>. <10.1016/j.neucom.2015.12.114>. <hal-01312590>

Partager

Métriques

Consultations de
la notice

61

Téléchargements du document

55