Cellular Automata Dynamical Systems

Abstract : We present recent studies on cellular automata (CAs) viewed as discrete dynamical systems. In the first part, we illustrate the relations between two important notions: subshift attractors and signal subshifts, measure attractors and particle weight functions. The second part of the chapter considers some operations on the space of one-dimensional CA configurations, namely, shifting and lifting, showing that they conserve many dynamical properties while reducing complexity. The final part reports recent investigations on two-dimensional CA. In particular, we report a construction (slicing construction) that allows us to see a two-dimensional CA as a one-dimensional one and to lift some one-dimensional results to the two-dimensional case.
Liste complète des métadonnées

Contributeur : Enrico Formenti <>
Soumis le : vendredi 6 mai 2016 - 17:00:45
Dernière modification le : samedi 7 mai 2016 - 01:04:46




Alberto Dennunzio, Enrico Formenti, Petr Kurka. Cellular Automata Dynamical Systems. Grzegorz Rozenberg; Thomas Bäck; Joost N. Kok. Handbook of Natural Computing, Springer, pp.25--75, 2012, 978-3-540-92909-3. 〈10.1007/978-3-540-92910-9_2〉. 〈http://link.springer.com/referenceworkentry/10.1007%2F978-3-540-92910-9_2〉. 〈hal-01312493〉



Consultations de la notice