Conservative dissipation: How important is the Jacobi identity in the dynamics?

Abstract : Hamiltonian dynamics are characterized by a function, called the Hamiltonian, and a Poisson bracket. The Hamiltonian is a conserved quantity due to the anti-symmetry of the Poisson bracket. The Poisson bracket satisfies the Jacobi identity which is usually more intricate and more complex to comprehend than the conservation of the Hamiltonian. Here we investigate the importance of the Jacobi identity in the dynamics by considering three different types of conservative flows in R3 : Hamiltonian, almost-Poisson and metriplectic. The comparison of their dynamics reveals the importance of the Jacobi identity in structuring the resulting phase space.
Type de document :
Article dans une revue
Chaos, American Institute of Physics, 2016, 26, pp.053101. 〈10.1063/1.4948411〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01312317
Contributeur : Cristel Chandre <>
Soumis le : jeudi 5 mai 2016 - 17:44:09
Dernière modification le : mardi 10 mai 2016 - 01:06:10
Document(s) archivé(s) le : mercredi 25 mai 2016 - 03:20:51

Fichiers

Chaos2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cameron Caligan, Cristel Chandre. Conservative dissipation: How important is the Jacobi identity in the dynamics?. Chaos, American Institute of Physics, 2016, 26, pp.053101. 〈10.1063/1.4948411〉. 〈hal-01312317〉

Partager

Métriques

Consultations de la notice

551

Téléchargements de fichiers

144