Autonomic Parallelism and Thread Mapping Control on Software Transactional Memory

Abstract : Parallel programs need to manage the trade-offbetween the time spent in synchronization and computation.The time trade-off is affected by the number of active threadssignificantly. High parallelism may decrease computing time whileincrease synchronization cost. Furthermore thread locality ondifferent cores may impact on program performance too, asthe memory access time can vary from one core to anotherdue to the complexity of the underlying memory architecture.Therefore the performance of a program can be improved byadjusting the number of active threads as well as the mapping ofits threads to physical cores. However, there is no universal rule todecide the parallelism and the thread locality for a program froman offline view. Furthermore, an offline tuning is error-prone.In this paper, we dynamically manage parallelism and threadlocalities. We address multiple threads problems via SoftwareTransactional Memory (STM). STM has emerged as a promisingtechnique, which bypasses locks, to address synchronization issuesthrough transactions. Autonomic computing offers designers aframework of methods and techniques to build autonomic systemswith well-mastered behaviours. Its key idea is to implementfeedback control loops to design safe, efficient and predictablecontrollers, which enable monitoring and adjusting controlledsystems dynamically while keeping overhead low. We propose todesign a feedback control loop to automate thread managementat runtime and diminish program execution time.
Type de document :
Communication dans un congrès
13th IEEE International Conference on Autonomic Computing (ICAC 2016), Jul 2016, Wurzburg, Germany. pp.189 - 198, 2016, 〈10.1109/ICAC.2016.54〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01309681
Contributeur : Jean-Francois Méhaut <>
Soumis le : mardi 26 juillet 2016 - 10:06:46
Dernière modification le : mercredi 24 mai 2017 - 15:48:11
Document(s) archivé(s) le : jeudi 27 octobre 2016 - 10:36:07

Fichier

AutonomicComputingSTM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Naweiluo Zhou, Gwenaël Delaval, Bogdan Robu, Eric Rutten, Jean-François Méhaut. Autonomic Parallelism and Thread Mapping Control on Software Transactional Memory. 13th IEEE International Conference on Autonomic Computing (ICAC 2016), Jul 2016, Wurzburg, Germany. pp.189 - 198, 2016, 〈10.1109/ICAC.2016.54〉. 〈hal-01309681〉

Partager

Métriques

Consultations de
la notice

532

Téléchargements du document

112