Extended generalised variances, with applications

Abstract : We consider a measure ψ k of dispersion which extends the notion of Wilk's generalised variance for a d-dimensional distribution, and is based on the mean squared volume of simplices of dimension k ≤ d formed by k + 1 independent copies. We show how ψ k can be expressed in terms of the eigenvalues of the covariance matrix of the distribution, also when a n-point sample is used for its estimation, and prove its concavity when raised at a suitable power. Some properties of dispersion-maximising distributions are derived, including a necessary and sufficient condition for optimality. Finally, we show how this measure of dispersion can be used for the design of optimal experiments, with equivalence to A and D-optimal design for k = 1 and k = d respectively. Simple illustrative examples are presented.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

Contributeur : Luc Pronzato <>
Soumis le : mercredi 27 avril 2016 - 11:20:25
Dernière modification le : lundi 5 novembre 2018 - 15:52:02
Document(s) archivé(s) le : jeudi 28 juillet 2016 - 10:31:49


Fichiers éditeurs autorisés sur une archive ouverte


  • HAL Id : hal-01308092, version 1
  • ARXIV : 1411.6428



Luc Pronzato, Henry Wynn, Anatoly Zhigljavsky. Extended generalised variances, with applications. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016. 〈hal-01308092〉



Consultations de la notice


Téléchargements de fichiers