Spectral properties of a class of random walks on locally finite groups

Abstract : We study some spectral properties of random walks on infinite countable amenable groups with an emphasis on locally finite groups, e.g. the infinite symmetric group. On locally finite groups, the random walks under consideration are driven by infinite divisible distributions. This allows us to embed our random walks into continuous time L\'evy processes whose heat kernels have shapes similar to the ones of alpha-stable processes. We obtain examples of fast/slow decays of return probabilities, a recurrence criterion, exact values and estimates of isospectral profiles and spectral distributions, formulae and estimates for the escape rates and for heat kernels.
Type de document :
Article dans une revue
Groups Geometry and Dynamics, European Mathematical Society, 2013, 7 (4), pp.791-820. 〈10.4171/GGD/206〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01304985
Contributeur : Aigle I2m <>
Soumis le : mercredi 20 avril 2016 - 15:09:44
Dernière modification le : jeudi 4 octobre 2018 - 01:20:19

Lien texte intégral

Identifiants

Collections

Citation

Alexander Bendikov, Barbara Bobikau, Christophe Pittet. Spectral properties of a class of random walks on locally finite groups. Groups Geometry and Dynamics, European Mathematical Society, 2013, 7 (4), pp.791-820. 〈10.4171/GGD/206〉. 〈hal-01304985〉

Partager

Métriques

Consultations de la notice

156