The Hochschild-Kostant-Rosenberg Isomorphism for Quantized Analytic Cycles

Abstract : In this article, we provide a detailed account of a construction sketched by Kashiwara in an unpublished manuscript concerning generalized HKR isomorphisms for smooth analytic cycles whose conormal exact sequence splits. It enables us, among other applications, to solve a problem raised recently by Arinkin and C\u{a}ld\u{a}raru about uniqueness of such HKR isomorphisms in the case of the diagonal injection. Using this construction, we also associate with any smooth analytic cycle endowed with an infinitesimal retraction a cycle class which is an obstruction for the cycle to be the vanishing locus of a transverse section of a holomorphic vector bundle.
Type de document :
Article dans une revue
International Mathematics Research Notices, Oxford University Press (OUP), 2014, 2014 (4), pp.865--913. 〈10.1093/imrn/rns238〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01301438
Contributeur : Aigle I2m <>
Soumis le : mardi 12 avril 2016 - 11:23:05
Dernière modification le : mercredi 29 novembre 2017 - 14:39:57

Identifiants

Collections

Citation

Julien Grivaux. The Hochschild-Kostant-Rosenberg Isomorphism for Quantized Analytic Cycles. International Mathematics Research Notices, Oxford University Press (OUP), 2014, 2014 (4), pp.865--913. 〈10.1093/imrn/rns238〉. 〈hal-01301438〉

Partager

Métriques

Consultations de la notice

52