On a conjecture of Kashiwara relating Chern and Euler classes of O-modules

Abstract : In this note we prove a conjecture of Kashiwara, which states that the Euler class of a coherent analytic sheaf F on a complex manifold X is the product of the Chern character of F with the Todd class of X. As a corollary, we obtain a functorial proof of the Grothendieck-Riemann-Roch theorem in Hodge cohomology for complex manifolds.
Type de document :
Article dans une revue
Journal of Differential Geometry, International Press, 2012, 90 (2), pp.267--275. 〈http://projecteuclid.org/euclid.jdg/1335230847〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01301388
Contributeur : Aigle I2m <>
Soumis le : mardi 12 avril 2016 - 11:04:46
Dernière modification le : jeudi 30 novembre 2017 - 01:28:39

Identifiants

  • HAL Id : hal-01301388, version 1
  • ARXIV : 0910.5384

Collections

INSMI | UPMC | USPC | IMJ

Citation

Julien Grivaux. On a conjecture of Kashiwara relating Chern and Euler classes of O-modules. Journal of Differential Geometry, International Press, 2012, 90 (2), pp.267--275. 〈http://projecteuclid.org/euclid.jdg/1335230847〉. 〈hal-01301388〉

Partager

Métriques

Consultations de la notice

42