Travelling wave solutions for some two-component shallow water models

Abstract : In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyse the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01294603
Contributeur : Denys Dutykh <>
Soumis le : mardi 29 mars 2016 - 15:10:19
Dernière modification le : mercredi 18 mai 2016 - 11:03:24
Document(s) archivé(s) le : jeudi 30 juin 2016 - 16:34:29

Fichiers

DD-DIK-JDiffEqs-2016.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

Denys Dutykh, Delia Ionescu-Kruse. Travelling wave solutions for some two-component shallow water models. Journal of Differential Equations, Elsevier, 2016, 261 (2), pp.1099-1114. <http://www.sciencedirect.com/science/article/pii/S0022039616300110>. <10.1016/j.jde.2016.03.035>. <hal-01294603>

Partager

Métriques

Consultations de
la notice

245

Téléchargements du document

84