Skip to Main content Skip to Navigation
Journal articles

STABILIZATION OF THE ASYMPTOTIC EXPANSIONS OF THE ZEROS OF A PARTIAL THETA FUNCTION

Abstract : The bivariate series θ(q, x) := Σ∞ (j=0) q j(j+1)/2 x j defines a partial theta function. For fixed q (|q| < 1), θ(q, .) is an entire function. We prove a property of stabilization of the coefficients of the Laurent series in q of the zeros of θ. These series are of the form −q −j + (−1) j q j(j−1)/2 (1 + Σ∞(k=1) g j,kq^k). The coefficients of the stabilized series are expressed by the positive integers r k giving the number of partitions into parts of three different kinds. They satisfy the recurrence relation rk = Σ∞ (ν=1) (−1)^(v−1) (2ν + 1)r k−ν(ν+1)/2. Set (H m,j) : Σ∞ (k=0) r k q k (1 − q j+1 + q 2j+3 − · · · + (−1) m−1 q (m−1)j+m(m−1)/2) = Σ∞ (k=0) r k;m,j q k. Then for k ≤ (m + 2j)(m + 1)/2 − 1 − j and j ≥ (2m − 1 + √ (8m^2 + 1))/2 one has g j,k = ˜ r k;m,j .
Document type :
Journal articles
Complete list of metadatas

Cited literature [8 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01291200
Contributor : Vladimir Kostov <>
Submitted on : Monday, March 21, 2016 - 2:03:49 PM
Last modification on : Monday, October 12, 2020 - 2:28:06 PM

Identifiers

  • HAL Id : hal-01291200, version 1

Collections

Citation

Vladimir Kostov. STABILIZATION OF THE ASYMPTOTIC EXPANSIONS OF THE ZEROS OF A PARTIAL THETA FUNCTION. Comptes rendus de l'Académie bulgare des Sciences, Bulgarian Academy of Sciences, 2015, 68 (10), pp.1217-1222. ⟨hal-01291200⟩

Share

Metrics

Record views

144