Algebraic method for constructing singular steady solitary waves: A case study: Singular solitary waves

Abstract : This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equations with surface tension, because it provides a tractable model that, in the same time, is not too simple so the interest of the method can be emphasised. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of Physics. In capillary-gravity regime, there are two kinds of localised infinitely smooth travelling wave solutions -- solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, the ``zoology'' of solutions becomes much richer and the main goal of this study is to provide a complete classification of such singular localised solutions using the methods of the effective Algebraic Geometry.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01290471
Contributeur : Denys Dutykh <>
Soumis le : vendredi 17 juin 2016 - 09:42:07
Dernière modification le : samedi 17 décembre 2016 - 01:03:57
Document(s) archivé(s) le : dimanche 18 septembre 2016 - 10:57:06

Fichiers

DC-DD-AG-2016.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

  • HAL Id : hal-01290471, version 2
  • ARXIV : 1603.07472

Collections

Citation

Didier Clamond, Denys Dutykh, André Galligo. Algebraic method for constructing singular steady solitary waves: A case study: Singular solitary waves. Proceedings of the Royal Society of London, Royal Society, The, 2016, 472 (2191), pp.20160194. <http://rspa.royalsocietypublishing.org/content/472/2191/20160194>. <hal-01290471v2>

Partager

Métriques

Consultations de
la notice

435

Téléchargements du document

74