Trapped modes in thin and infinite ladder like domains. Part 1 : existence results

Bérangère Delourme 1 Sonia Fliss 2 Patrick Joly 2 Elizaveta Vasilevskaya 1
1 LAGA
LAGA - Laboratoire Analyse, Géométrie et Applications
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : The present paper deals with the wave propagation in a particular two dimensional structure, obtained from a localized perturbation of a reference periodic medium. This reference medium is a ladder like domain, namely a thin periodic structure (the thickness being characterized by a small parameter $\epsilon > 0$) whose limit (as $\epsilon$ tends to 0) is a periodic graph. The localized perturbation consists in changing the geometry of the reference medium by modifying the thickness of one rung of the ladder. Considering the scalar Helmholtz equation with Neumann boundary conditions in this domain, we wonder whether such a geometrical perturbation is able to produce localized eigenmodes. To address this question, we use a standard approach of asymptotic analysis that consists of three main steps. We first find the formal limit of the eigenvalue problem as the $\epsilon$ tends to 0. In the present case, it corresponds to an eigenvalue problem for a second order differential operator defined along the periodic graph. Then, we proceed to an explicit calculation of the spectrum of the limit operator. Finally, we prove that the spectrum of the initial operator is close to the spectrum of the limit operator. In particular, we prove the existence of localized modes provided that the geometrical perturbation consists in diminishing the width of one rung of the periodic thin structure. Moreover, in that case, it is possible to create as many eigenvalues as one wants, provided that ε is small enough. Numerical experiments illustrate the theoretical results.
Type de document :
Article dans une revue
Asymptotic Analysis, IOS Press, 2017, 103(3) (103-134)
Liste complète des métadonnées

Littérature citée [58 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01287127
Contributeur : Sonia Fliss <>
Soumis le : mardi 19 septembre 2017 - 09:28:43
Dernière modification le : jeudi 5 octobre 2017 - 16:14:02

Fichiers

AA_DFJV_FinalVersion.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Domaine public

Identifiants

  • HAL Id : hal-01287127, version 1
  • ARXIV : 1709.06345

Citation

Bérangère Delourme, Sonia Fliss, Patrick Joly, Elizaveta Vasilevskaya. Trapped modes in thin and infinite ladder like domains. Part 1 : existence results. Asymptotic Analysis, IOS Press, 2017, 103(3) (103-134). 〈hal-01287127〉

Partager

Métriques

Consultations de
la notice

296

Téléchargements du document

94