Asymptotic Stability of Pseudo-simple Heteroclinic Cycles in $\mathbb{R}^4$

Abstract : Robust heteroclinic cycles in equivariant dynamical systems in $\mathbb{R}^4$ have been a subject of intense scientific investigation because, unlike heteroclinic cycles in $\mathbb{R}^3$, they can have an intricate geometric structure and complex asymptotic stability properties that are not yet completely understood. In a recent work, we have compiled an exhaustive list of finite subgroups of $O(4)$ admitting the so-called simple heteroclinic cycles, and have identified a new class which we have called pseudo-simple heteroclinic cycles. By contrast with simple heteroclinic cycles, a pseudo-simple one has at least one equilibrium with an unstable manifold which has dimension 2 due to a symmetry. Here, we analyze the dynamics of nearby trajectories and asymptotic stability of pseudo-simple heteroclinic cycles in $\mathbb{R}^4$.
Type de document :
Article dans une revue
Journal of Nonlinear Science, Springer Verlag, 2017, 27 (1), pp.343-375. 〈https://link.springer.com/article/10.1007/s00332-016-9335-4〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01286143
Contributeur : Pascal Chossat <>
Soumis le : jeudi 10 mars 2016 - 17:40:07
Dernière modification le : jeudi 3 mai 2018 - 13:32:58
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 14:01:13

Fichier

st1509.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01286143, version 1
  • ARXIV : 1509.07277

Citation

Olga Podvigina, Pascal Chossat. Asymptotic Stability of Pseudo-simple Heteroclinic Cycles in $\mathbb{R}^4$. Journal of Nonlinear Science, Springer Verlag, 2017, 27 (1), pp.343-375. 〈https://link.springer.com/article/10.1007/s00332-016-9335-4〉. 〈hal-01286143〉

Partager

Métriques

Consultations de la notice

413

Téléchargements de fichiers

66