Time-Driven Superoscillations with Negative Refraction

Abstract : The flat-lens concept based on negative refraction proposed by Veselago in 1968 has been mostly investigated in the monochromatic regime. It was recently recognized that time development of the superlensing effect discovered in 2000 by Pendry is yet to be assessed and may spring surprises: Time-dependent illumination could improve the spatial resolution of the focusing. We investigate dynamics of flexural wave focusing by a 45°-tilted square lattice of circular holes drilled in a duralumin plate. Time-resolved experiments reveal that the focused image shrinks with time below the diffraction limit, with a lateral resolution increasing from 0.8λ to 0.35λ, whereas focusing under harmonic excitation remains diffraction limited. Modal analysis reveals the role in pulse reconstruction of radiating lens resonances, which repeatedly self-synchronize at the focal spot to shape a superoscillating field.
Document type :
Journal articles
Complete list of metadatas

Contributor : Sébastien Guenneau <>
Submitted on : Saturday, March 5, 2016 - 8:16:04 PM
Last modification on : Tuesday, May 14, 2019 - 10:45:12 AM


  • HAL Id : hal-01283637, version 1


Marc Dubois, Emmanuel Bossy, Stefan Enoch, Sébastien Guenneau, Geoffroy Lerosey, et al.. Time-Driven Superoscillations with Negative Refraction. Physical Review Letters, American Physical Society, 2015, 116, pp.013902. ⟨hal-01283637⟩



Record views