Series Representation of Power Function

Abstract : In this paper described numerical expansion of natural-valued power function $x^n$, in point $x=x_0$ where $n, \ x_0$ - natural numbers. Applying numerical methods, that is calculus of finite differences, namely, discrete case of Binomial expansion is reached. Received results were compared with solutions according to Newton’s Binomial theorem and MacMillan Double Binomial sum. Additionally, in section 4 exponential function’s $e^x$ representation is shown.
Type de document :
Pré-publication, Document de travail
15 pages, 5 figures, 1 table, results generalized, references revised, Mathematica codes in Appli.. 2017
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01283042
Contributeur : Petro Kolosov <>
Soumis le : dimanche 3 décembre 2017 - 00:33:11
Dernière modification le : mercredi 6 décembre 2017 - 01:07:16

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

Kolosov Petro. Series Representation of Power Function. 15 pages, 5 figures, 1 table, results generalized, references revised, Mathematica codes in Appli.. 2017. 〈hal-01283042v7〉

Partager

Métriques

Consultations de la notice

8

Téléchargements de fichiers

6