Single Approximation for Biobjective Max TSP

Cristina Bazgan Laurent Gourvès Jérôme Monnot Fanny Pascual 1
1 RO - Recherche Opérationnelle
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : We propose an algorithm which returns a single Hamiltonian cycle with performance guarantee on both objectives. The algorithm is analysed in three cases. When both (resp. at least one) objective function(s) fulfill(s) the triangle inequality, the approximation ratio is $\frac{5}{12}-\varepsilon \approx 0.41$ (resp. $\frac{3}{8}-\varepsilon$). When the triangle inequality is not assumed on any objective function, the algorithm is $\frac{1+2\sqrt{2}}{14}-\varepsilon\approx0.27$-approximate.
Document type :
Conference papers
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01282507
Contributor : Lip6 Publications <>
Submitted on : Thursday, March 3, 2016 - 5:36:16 PM
Last modification on : Thursday, March 21, 2019 - 1:06:32 PM

Links full text

Identifiers

Citation

Cristina Bazgan, Laurent Gourvès, Jérôme Monnot, Fanny Pascual. Single Approximation for Biobjective Max TSP. 9th Workshop on Approximation and Online Algorithms, Sep 2011, Saarbrücken, Germany. pp.49-62, ⟨10.1007/978-3-642-29116-6_5⟩. ⟨hal-01282507⟩

Share

Metrics

Record views

172