Determination of the Effective Thermal Conductivity Tensor of Heterogeneous Media Using a Self-Consistent Finite Element Method: Application to the Pseudo-percolation Thresholds of Mixtures Containing Nonspherical Inclusions - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Heat Transfer Année : 2000

Determination of the Effective Thermal Conductivity Tensor of Heterogeneous Media Using a Self-Consistent Finite Element Method: Application to the Pseudo-percolation Thresholds of Mixtures Containing Nonspherical Inclusions

Résumé

This paper concerns the determination of the effective thermal conductivity of heterogeneous media with randomly dispersed inclusions. Inclusions of arbitrary shape can be considered since the self-consistent problem is solved numerically with the finite element method. Results for many different cases of heterogeneous media with axially symmetrical inclusions are presented. Moreover, the influence of the inclusion's shape on the pseudo-percolation threshold is investigated.
Fichier non déposé

Dates et versions

hal-01282067 , version 1 (03-03-2016)

Identifiants

Citer

A. Decarlis, M. Jaeger, Roland Martin. Determination of the Effective Thermal Conductivity Tensor of Heterogeneous Media Using a Self-Consistent Finite Element Method: Application to the Pseudo-percolation Thresholds of Mixtures Containing Nonspherical Inclusions. Journal of Heat Transfer, 2000, 122 (1), ⟨10.1115/1.521451⟩. ⟨hal-01282067⟩
71 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More