Optimal Design for Prediction in Random Field Models via Covariance Kernel Expansions

Abstract : We consider experimental design for the prediction of a realization of a second-order random field Z with known covariance function, or kernel, K. When the mean of Z is known, the integrated mean squared error of the best linear pre-dictor, approximated by spectral truncation, coincides with that obtained with a Bayesian linear model. The machinery of approximate design theory is then available to determine optimal design measures, from which exact designs (collections of sites where to observe Z) can be extracted. The situation is more complex in the presence of an unknown linear parametric trend, and we show how a Bayesian linear model especially adapted to the trend can be obtained via a suitable projection of Z which yields a reduction of K.
Type de document :
Communication dans un congrès
J. Kunert, Ch.H. Müller, A.C. Atkinson. MODA 11, Jun 2016, Hamminkeln-Dingden, Germany. Springer, mODa'11 - Advances in Model-Oriented Design and Analysis, Proceedings of the 11th Int. Workshop
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01280355
Contributeur : Luc Pronzato <>
Soumis le : lundi 29 février 2016 - 14:08:39
Dernière modification le : mercredi 27 avril 2016 - 12:07:22
Document(s) archivé(s) le : lundi 30 mai 2016 - 15:18:08

Fichier

Gauthier-Pronzato-MODA11.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01280355, version 1

Collections

Citation

Bertrand Gauthier, Luc Pronzato. Optimal Design for Prediction in Random Field Models via Covariance Kernel Expansions. J. Kunert, Ch.H. Müller, A.C. Atkinson. MODA 11, Jun 2016, Hamminkeln-Dingden, Germany. Springer, mODa'11 - Advances in Model-Oriented Design and Analysis, Proceedings of the 11th Int. Workshop. 〈hal-01280355〉

Partager

Métriques

Consultations de
la notice

161

Téléchargements du document

97