Harnack inequalities and local central limit theorem for the polynomial lower tail random conductance model

Abstract : We prove upper bounds on the transition probabilities of random walks with i.i.d. random conductances with a polynomial lower tail near 0. We consider both constant and variable speed models. Our estimates are sharp. As a consequence, we derive local central limit theorems, parabolic Harnack inequalities and Gaussian bounds for the heat kernel. Some of the arguments are robust and applicable for random walks on general graphs. Such results are stated under a general setting.
Type de document :
Article dans une revue
Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2015, 67 (4), pp.1413-1448. 〈10.2969/jmsj/06741413〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01270942
Contributeur : Aigle I2m <>
Soumis le : lundi 8 février 2016 - 16:23:47
Dernière modification le : vendredi 19 octobre 2018 - 11:14:03

Lien texte intégral

Identifiants

Collections

Citation

Omar Boukhadra, Takashi Kumagai, Pierre Mathieu. Harnack inequalities and local central limit theorem for the polynomial lower tail random conductance model. Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2015, 67 (4), pp.1413-1448. 〈10.2969/jmsj/06741413〉. 〈hal-01270942〉

Partager

Métriques

Consultations de la notice

152