Clique-decomposition revisited

David Coudert 1 Guillaume Ducoffe 1
1 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : The decomposition of graphs by clique-minimal separators is a common algorithmic tool, first introduced by Tarjan. Since it allows to cut a graph into smaller pieces, it can be applied to pre-process the graphs in the computation of many optimization problems. However, the best known clique-decomposition algorithms have respective O(nm)-time and O(n 2.69)-time complexity, that is prohibitive for large graphs. Here we prove that for every graph G, the decomposition can be computed in O T (G) + min{n 2.3729 , ω 2 n}-time with T (G) and ω being respectively the time needed to compute a minimal triangulation of G and the clique-number of G. In particular, it implies that every graph can be clique-decomposed iñ O(n 2.3729)-time. Based on prior work from Kratsch et al., we prove in addition that computing the clique-decomposition is at least as hard as triangle detection. Therefore, the existence of any o(n 2.3729)-time clique-decomposition algorithm would be a significant breakthrough in the field of algorithmic. Finally, our main result implies that planar graphs, bounded-treewidth graphs and bounded-degree graphs can be clique-decomposed in linear or quasi-linear time.
Type de document :
[Research Report] INRIA Sophia Antipolis - I3S. 2016
Liste complète des métadonnées
Contributeur : Guillaume Ducoffe <>
Soumis le : mardi 2 février 2016 - 10:44:45
Dernière modification le : vendredi 16 septembre 2016 - 15:21:17
Document(s) archivé(s) le : samedi 12 novembre 2016 - 01:48:15


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01266147, version 1



David Coudert, Guillaume Ducoffe. Clique-decomposition revisited. [Research Report] INRIA Sophia Antipolis - I3S. 2016. <hal-01266147>



Consultations de
la notice


Téléchargements du document