On p-adic differential equations with separation of variables

Abstract : Several algorithms in computer algebra involve the computation of a power series solution of a given ordinary differential equation. Over finite fields, the problem is often lifted in an approximate $p$-adic setting to be well-posed. This raises precision concerns: how much precision do we need on the input to compute the output accurately? In the case of ordinary differential equations with separation of variables, we make use of the recent technique of differential precision to obtain optimal bounds on the stability of the Newton iteration. The results apply, for example, to algorithms for manipulating algebraic numbers over finite fields, for computing isogenies between elliptic curves or for deterministically finding roots of polynomials in finite fields. The new bounds lead to significant speedups in practice.
Type de document :
Communication dans un congrès
ISSAC 2016, Jul 2016, Waterloo, Ontario, Canada. Proceedings of the 41st International Symposium on Symbolic and Algebraic Computation, <http://issac-symposium.org/2016/>. <10.1145/2930889.2930912>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01265226
Contributeur : Pierre Lairez <>
Soumis le : mardi 10 mai 2016 - 09:25:06
Dernière modification le : jeudi 12 mai 2016 - 16:37:35
Document(s) archivé(s) le : mardi 15 novembre 2016 - 19:37:01

Fichiers

padicdeq.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Pierre Lairez, Tristan Vaccon. On p-adic differential equations with separation of variables. ISSAC 2016, Jul 2016, Waterloo, Ontario, Canada. Proceedings of the 41st International Symposium on Symbolic and Algebraic Computation, <http://issac-symposium.org/2016/>. <10.1145/2930889.2930912>. <hal-01265226v2>

Partager

Métriques

Consultations de
la notice

33

Téléchargements du document

69