Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case

Vianney Perchet 1, 2, 3 Joon Kwon 4
1 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01265075
Contributor : Vianney Perchet <>
Submitted on : Saturday, January 30, 2016 - 6:47:24 PM
Last modification on : Sunday, March 31, 2019 - 1:23:41 AM

Links full text

Identifiers

  • HAL Id : hal-01265075, version 1
  • ARXIV : 1511.08405

Citation

Vianney Perchet, Joon Kwon. Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case . 2015. ⟨hal-01265075⟩

Share

Metrics

Record views

242