Skip to Main content Skip to Navigation
Conference papers

High Order Absorbing Boundary Conditions for the 2D Helmholtz Equation

Hélène Barucq 1 Juliette Chabassier 1, 2 Morgane Bergot 3
1 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
3 CALVI - Scientific computation and visualization
IRMA - Institut de Recherche Mathématique Avancée, LSIIT - Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
Abstract : We present high order absorbing boundary conditions (ABC) for the 2D Helmholtz equation that can adapt to any regular shaped surface. The new ABCs are derived by using the technique of micro-diagonalisation to approximate the Dirichlet-to-Neumann map. Numerical results on different shapes illustrate the behavior of the new ABCs along with high-order finite elements.
Complete list of metadatas

Cited literature [3 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01264019
Contributor : Juliette Chabassier <>
Submitted on : Thursday, January 28, 2016 - 3:31:00 PM
Last modification on : Thursday, March 5, 2020 - 7:14:45 PM
Document(s) archivé(s) le : Friday, November 11, 2016 - 6:30:18 PM

File

2015-WAVES-CLA.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01264019, version 1

Citation

Hélène Barucq, Juliette Chabassier, Morgane Bergot. High Order Absorbing Boundary Conditions for the 2D Helmholtz Equation. THE 12TH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, Jul 2015, Karlsruhe, Germany. ⟨hal-01264019⟩

Share

Metrics

Record views

259

Files downloads

200