Distribution of zeros in the rough geometry of fluctuating interfaces

Abstract : We study numerically the correlations and the distribution of intervals between successive zeros in the fluctuating geometry of stochastic interfaces, described by the Edwards-Wilkinson equation. For equilibrium states we find that the distribution of interval lengths satisfies a truncated Sparre-Andersen theorem. We show that boundary-dependent finite-size effects induce non-trivial correlations, implying that the independent interval property is not exactly satisfied in finite systems. For out-of-equilibrium non-stationary states we derive the scaling law describing the temporal evolution of the density of zeros starting from an uncorrelated initial condition. As a by-product we derive a general criterion of the Von Neumann's type to understand how discretization affects the stability of the numerical integration of stochastic interfaces. We consider both diffusive and spatially fractional dynamics. Our results provide an alternative experimental method for extracting universal information of fluctuating interfaces such as domain walls in thin ferromagnets or ferroelectrics, based exclusively on the detection of crossing points.
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

Contributeur : Vivien Lecomte <>
Soumis le : mardi 26 janvier 2016 - 19:20:27
Dernière modification le : jeudi 21 mars 2019 - 14:22:25
Document(s) archivé(s) le : mercredi 27 avril 2016 - 13:20:23


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01262599, version 1
  • ARXIV : 1512.03676


Arturo Zamorategui, Vivien Lecomte, Alejandro B. Kolton. Distribution of zeros in the rough geometry of fluctuating interfaces. 2015. 〈hal-01262599〉



Consultations de la notice


Téléchargements de fichiers