Simulation of SPDEs for excitable media using finite elements

Abstract : In this paper, we address the question of the discretization of stochastic partial differential equations (SPDEs) for excitable media. Working with SPDEs driven by colored noise, we consider a numerical scheme based on finite differences in time (Euler–Maruyama) and finite elements in space. Motivated by biological considerations, we study numerically the emergence of reentrant patterns in excitable systems such as the Barkley or Mitchell–Schaeffer models.
Type de document :
Article dans une revue
Journal of Scientific Computing, Springer Verlag, 2015, 65 (1), pp.171-195. <10.1007/s10915-014-9960-8>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01262110
Contributeur : Serena Benassù <>
Soumis le : mardi 26 janvier 2016 - 11:34:08
Dernière modification le : jeudi 27 avril 2017 - 09:47:21

Identifiants

Collections

Citation

Muriel Boulakia, A. Genadot, M. Thieullen. Simulation of SPDEs for excitable media using finite elements. Journal of Scientific Computing, Springer Verlag, 2015, 65 (1), pp.171-195. <10.1007/s10915-014-9960-8>. <hal-01262110>

Partager

Métriques

Consultations de la notice

90