On interfaces between cell populations with different mobilities

Abstract : Partial differential equations describing the dynamics of cell population densities from a fluid mechanical perspective can model the growth of avascular tumours. In this framework, we consider a system of equations that describes the interaction between a population of dividing cells and a population of non-dividing cells. The two cell populations are characterised by different mobilities. We present the results of numerical simulations displaying two-dimensional spherical waves with sharp interfaces between dividing and non-dividing cells. Furthermore, we numerically observe how different ratios between the mobilities change the morphology of the interfaces, and lead to the emergence of finger-like patterns of invasion above a threshold. Motivated by these simulations, we study the existence of one-dimensional travelling wave solutions.
Type de document :
Article dans une revue
Kinetic and Related Models , AIMS, 2017, 10 (1), pp.299-311
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01257180
Contributeur : Tommaso Lorenzi <>
Soumis le : vendredi 6 janvier 2017 - 19:03:48
Dernière modification le : jeudi 20 juillet 2017 - 09:29:59
Document(s) archivé(s) le : vendredi 7 avril 2017 - 17:30:22

Fichier

Two_cells_TW (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01257180, version 2

Citation

Tommaso Lorenzi, Alexander Lorz, Benoît Perthame. On interfaces between cell populations with different mobilities. Kinetic and Related Models , AIMS, 2017, 10 (1), pp.299-311. 〈hal-01257180v2〉

Partager

Métriques

Consultations de
la notice

372

Téléchargements du document

94