Skip to Main content Skip to Navigation
Conference papers

Tumor classification and prediction using robust multivariate clustering of multiparametric MRI

Alexis Arnaud 1 Florence Forbes 1 Benjamin Lemasson 2 Emmanuel Luc Barbier 2
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 Equipe 5 : NeuroImagerie Fonctionnelle et Perfusion Cérébrale
UJF - Université Joseph Fourier - Grenoble 1, CEA - Commissariat à l'énergie atomique et aux énergies alternatives, INSERM - Institut National de la Santé et de la Recherche Médicale : U836, [GIN] Grenoble Institut des Neurosciences
Abstract : In neuro-oncology, the use of multiparametric MRI may better characterize brain tumor heterogeneity. To fully exploit multiparametric MRI (e.g. tumor classification), appropriate analysis methods are yet to be developed. In this work, we show on small animals data that advanced statistical learning approaches can help 1) in organizing existing data by detecting and excluding outliers and 2) in building a dictionary of tumor fingerprints from a clustering analysis of their microvascular features.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01253584
Contributor : Alexis Arnaud <>
Submitted on : Monday, January 11, 2016 - 9:27:38 AM
Last modification on : Thursday, March 26, 2020 - 8:49:32 PM
Document(s) archivé(s) le : Tuesday, April 12, 2016 - 11:06:08 AM

File

radF2633.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01253584, version 1

Collections

Citation

Alexis Arnaud, Florence Forbes, Benjamin Lemasson, Emmanuel Luc Barbier. Tumor classification and prediction using robust multivariate clustering of multiparametric MRI. International Society for Magnetic Resonance in Medicine, May 2015, Toronto, Canada. ⟨hal-01253584⟩

Share

Metrics

Record views

663

Files downloads

187