Fixed-point elimination in the Intuitionistic Propositional Calculus

Abstract : It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras—that is, the algebraic models of the Intuitionistic Propositional Calculus—always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the µ-calculus based on intuitionistic logic is trivial, every µ-formula being equivalent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given µ-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed-point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01249822
Contributeur : Luigi Santocanale <>
Soumis le : dimanche 3 janvier 2016 - 17:46:22
Dernière modification le : lundi 20 février 2017 - 11:43:43
Document(s) archivé(s) le : vendredi 15 avril 2016 - 15:43:18

Fichiers

0.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01249822, version 1
  • ARXIV : 1601.00402

Collections

Citation

Silvio Ghilardi, Maria Joao Gouveia, Luigi Santocanale. Fixed-point elimination in the Intuitionistic Propositional Calculus. FOSSACS 2016, Apr 2016, Eindhoven, Netherlands. <http://www.etaps.org/index.php/2016/fossacs>. <hal-01249822>

Partager

Métriques

Consultations de
la notice

212

Téléchargements du document

127