On tensor products of CSS Codes

Abstract : CSS codes are in one-to-one correspondence with length 3 chain complexes. The latter are naturally endowed with a tensor product which induces a similar operation on the former. We investigate this operation, and in particular its behavior with regard to minimum distances. Given a CSS code $C$, we give a criterion which provides a lower bound on the minimum distance of $C \otimes D$ for every CSS code $D$. We apply this result to study the behaviour of iterated tensor powers of codes. Such sequences of codes are logarithmically LDPC and we prove in particular that their minimum distances tend generically to infinity. Different known results are reinterpretated in terms of tensor products. Three new families of CSS codes are defined, and their iterated tensor powers produce LDPC sequences of codes with length n, row weight in O(logn) and minimum distances larger than $n^{\alpha /2}$ for any $\alpha<1$. One family produces sequences with dimensions larger than $n^{\beta}$ for any $\beta<1$.
Type de document :
Article dans une revue
Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, inPress
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01248760
Contributeur : Benjamin Audoux <>
Soumis le : jeudi 4 octobre 2018 - 16:17:21
Dernière modification le : lundi 4 mars 2019 - 14:04:22
Document(s) archivé(s) le : samedi 5 janvier 2019 - 17:00:40

Fichier

Article_On tensor product of C...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01248760, version 2
  • ARXIV : 1512.07081

Citation

Benjamin Audoux, Alain Couvreur. On tensor products of CSS Codes. Annales de l’Institut Henri Poincaré (D) Combinatorics, Physics and their Interactions, European Mathematical Society, inPress. 〈hal-01248760v2〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

46