Macroscopic dynamics of incoherent soliton ensembles: soliton-gas kinetics and direct numerical modeling: Incoherent soliton ensembles

Abstract : We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `cold' soliton gas consisting of randomly distributed solitons of approximately the same amplitude; and (ii) collision of two cold soliton gases of different amplitudes (soliton gas shock tube problem) leading to the formation of an incoherend dispersive shock wave. In both cases excellent agreement is observed between the analytical predictions of the soliton gas kinetics and the direct numerical simulations. Our results confirm relevance of the kinetic equation for solitons as a quantitatively accurate model for macroscopic non-equilibrium dynamics of incoherent soliton ensembles.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01248680
Contributeur : Denys Dutykh <>
Soumis le : dimanche 14 février 2016 - 16:21:30
Dernière modification le : dimanche 13 mars 2016 - 10:02:08
Document(s) archivé(s) le : dimanche 15 mai 2016 - 10:08:06

Fichiers

FC-DD-GE-SolitonicGas-KdV-2016...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

LAMA | UGA

Citation

Francesco Carbone, Denys Dutykh, Gennady El. Macroscopic dynamics of incoherent soliton ensembles: soliton-gas kinetics and direct numerical modeling: Incoherent soliton ensembles. EPL - Europhysics Letters, European Physical Society/EDP Sciences/Società Italiana di Fisica/IOP Publishing, 2016, 113 (3), pp.30003. <http://iopscience.iop.org/article/10.1209/0295-5075/113/30003>. <10.1209/0295-5075/113/30003>. <hal-01248680v2>

Partager

Métriques

Consultations de
la notice

77

Téléchargements du document

52