On circuit functionality in Boolean networks

Abstract : It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it “generates” several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of “generates.” Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.
Type de document :
Article dans une revue
Bulletin of Mathematical Biology, Springer Verlag, 2013, 75 (6), pp.906-919. <10.1007/s11538-013-9829-2>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01242396
Contributeur : Jean-Paul Comet <>
Soumis le : samedi 12 décembre 2015 - 09:43:00
Dernière modification le : jeudi 29 septembre 2016 - 01:26:52

Identifiants

Collections

Citation

Jean-Paul Comet, Mathilde Noual, Adrien Richard, J. Aracena, Laurence Calzone, et al.. On circuit functionality in Boolean networks. Bulletin of Mathematical Biology, Springer Verlag, 2013, 75 (6), pp.906-919. <10.1007/s11538-013-9829-2>. <hal-01242396>

Partager

Métriques

Consultations de la notice

173