Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction

Abstract : Abstract Engineering computer codes are often computationally expensive. To lighten this load, we exploit new covariance kernels to replace computationally expensive codes with surrogate models. For input spaces with large dimensions, using the Kriging model in the standard way is computationally expensive because a large covariance matrix must be inverted several times to estimate the parameters of the model. We address this issue herein by constructing a covariance kernel that depends on only a few parameters. The new kernel is constructed based on information obtained from the Partial Least Squares method. Promising results are obtained for numerical examples with up to 100 dimensions, and significant computational gain is obtained while maintaining sufficient accuracy.
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01232938
Contributeur : Nathalie Bartoli <>
Soumis le : mardi 24 novembre 2015 - 22:31:56
Dernière modification le : jeudi 15 novembre 2018 - 08:38:02
Document(s) archivé(s) le : jeudi 25 février 2016 - 12:40:20

Fichier

KPLS_paper2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01232938, version 1

Collections

Citation

Mohamed-Amine Bouhlel, Nathalie Bartoli, Abdelkader Otsmane, Joseph Morlier. Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction. 2015. 〈hal-01232938〉

Partager

Métriques

Consultations de la notice

299

Téléchargements de fichiers

972