Photochemistry, mixing and transport in Jupiter’s stratosphere constrained by Cassini

V. Hue 1 F. Hersant 1 T. Cavalié 2 M. Dobrijevic 2
1 ECLIPSE 2015
LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
2 ASP 2015
L3AB - Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux, OASU - Observatoire aquitain des sciences de l'univers, LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac], UB - Université de Bordeaux
Abstract : Jupiter’s obliquity and eccentricity drive the seasonal forcing on its atmosphere. The seasonal variations on its stratospheric temperature through radiative heating and composition through photochemistry are smaller than for Saturn, due to a lower obliquity and eccentricity. Although the physical conditions in these two planets are different, the stratospheric photochemistry is initiated and controlled by the methane photolysis [1]. We adapted a 2D (altitude-latitude) seasonal photochemical model of Saturn [2] to Jupiter. We compare the seasonal effects on the atmospheric composition between these two planets. We use previous 1D photochemical models for the vertical mixing efficiency [1,3] and recent Cassini observations to constrain the meridional mixing efficiency and transport processes [4,5,6].Cassini’s flyby of Jupiter has allowed mapping its stratospheric temperature as a function of latitude [7]. It has also revealed the meridional distribution of hydrocarbons [8,9], which were suggested by earlier studies [10,4]. Previous models suggest that vertical mixing alone is not sufficient to reproduce the observations of C2H2 and C2H6 [5,6], and that meridional mixing is needed. We show that, in addition to meridional mixing, advective circulation is required to reproduce Cassini observations of C2H6. Preliminary results from our model suggest an equator-to-pole circulation cell in Jupiter’s stratosphere, around 30-0.01 mbar.References[1] Moses et al., 2005. JGR 110, 8001.[2] Hue et al., 2015. Icarus 257, 163-184.[3] Gladstone et al., 1996. Icarus 119, 1-52.[4] Kunde et al., 2004. Science 305, 1582-1587.[5] Liang et al., 2005. ApJ Lett. 635, L177-L180.[6] Lellouch et al., 2006. Icarus 184 (2), 478-497.[7] Simon-Miller et al., 2006. Icarus 180 (1), 98-112.[8] Nixon et al., 2007. Icarus 188, 47-71.[9] Nixon et al., 2010. PSS 58, 1667-1680.[10] Maguire et al., 1984. Bulletin of the AAS 16, 647-647.
Type de document :
Communication dans un congrès
2015DPS..4731115H - American Astronomical Society, DPS meeting #47, #311.15 held in Washington, DC, 8-13 November 2015, Nov 2015, Washington, United States. 47, 2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01229418
Contributeur : Marie-Paule Pomies <>
Soumis le : lundi 16 novembre 2015 - 15:55:11
Dernière modification le : mardi 17 novembre 2015 - 01:04:55

Identifiants

Collections

Citation

V. Hue, F. Hersant, T. Cavalié, M. Dobrijevic. Photochemistry, mixing and transport in Jupiter’s stratosphere constrained by Cassini. 2015DPS..4731115H - American Astronomical Society, DPS meeting #47, #311.15 held in Washington, DC, 8-13 November 2015, Nov 2015, Washington, United States. 47, 2015. <hal-01229418>

Partager

Métriques

Consultations de la notice

51